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A B S T R A C T

The frequency and severity of extreme weather events have increased over the last 30 years, making predict-
ability of weather a challenge. Weather extreme events often cause adverse impacts to lives and property. Thus,
accurate and timely provision of weather data is becoming crucial to improve the skill of weather prediction and
to strengthen resilience to the impacts of the adverse weather conditions. Uganda and many developing coun-
tries have challenges in acquiring accurate and timely weather data due to their sparse weather observation
networks. The sparse weather observation networks are in part attributed to the high cost of acquiring an
Automatic Weather Station (AWS) and limited funding to national meteorological services of the respective
countries. The inability of developing countries to manufacture their own AWSs leads to high recurring costs
accruing from importation and maintenance. In this study, we propose an AWS based on Wireless Sensor
Networks. We plan to design three generations of the AWS prototype, the first being the subject of this paper.
The purpose of this paper is therefore to evaluate the first-generation AWS prototype and to propose im-
provements for the second-generation, based on needs and requirements. Results from the AWS prototype data
suggest improving non-functional requirements such as reliability, data accuracy, power consumption and data
transmission in order to have an operational AWS. The non-functional requirements combined with cost re-
duction produces a robust and affordable AWS. Therefore, developing countries like Uganda will be able to
acquire the AWSs in reasonable quantities, hence improvement in weather forecasts.

1. Background and motivation

Weather is the present condition of the atmosphere over a given
place and time, measured in terms of variables including precipitation,
temperature, wind speed and direction and humidity among others (K.
et al., 2010). Weather can change over a short period of time such as
hours and days. In the past, weather patterns were easily predictable
based on indigenous knowledge e.g. one would tell in which months of
the year rains were expected for a given place. Such methods of weather
prediction have become unreliable (Hansen et al., 2012). That is, the
rains come when they are least expected.

When weather conditions are observed over a long period of time, it
informs the climate of a region. The climate is an average of the en-
semble of weather parameters over a long period of time and the World
Meteorological Organization has recommended a period of 30 years.
Over the last century, a general global warming and heavy rains have
been observed, leading to increased flooding and droughts in different
parts of the world, which suggested changing climate and is of present
concern globally (Hansen et al., 2012; Dube et al., 2016). In some re-
gions of East Africa, seasonal rains often come early or late, are poorly

distributed and often below normal (Hussein, 2011; J. Mubiru et al.,
2015). Uganda being a predominantly agricultural country has faced
adverse weather effects such as drought, which has caused famine in
some parts of the Eastern region. The study on the economic impact of
drought on agriculture in Uganda indicated a decline of 5% in the Gross
Domestic Product (GDP), which also resulted in losses in the industrial
sector (Kilimani et al., 2016).

In order to adapt to the changing weather patterns, many ap-
proaches have been suggested (Cairns et al., 2013; Lwasa et al., 2014;
Cooper et al., 2008). One adaptation approach, which is the subject of
this paper, is to improve the accuracy of weather predictions. In this
era, where weather is unpredictable and indigenous knowledge about
weather has failed, there is a need to have accurate and timely data
collection and transmission. This necessitates robust weather instru-
ments to provide accurate and timely weather data, which can be
achieved with increased density of weather station networks, hence
increased precision of readings and a better representation of areas
under observation. This is however, not the case with some countries
like Uganda where a sparse network of weather stations was observed
(Nsabagwa et al., 2016; Sansa and Waisswa, 2012). Furthermore, many
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of the weather stations in such countries are manually operated and
rely on traditional means of data collection and processing. Such
methods pose challenges such as delays in data delivery and human
errors in data handling among others. This calls for better weather data
collection techniques such as those used in Automatic Weather Stations
(AWSs).

An AWS consists of sensors, which automatically collect and
transmit weather data. If these AWSs are deployed in big numbers, the
reliability and accuracy of their data is improved, hence accurate
weather predictions. However, the high cost of the available AWSs
hinder their acquisition in big numbers for some developing countries.
Additionally, since most commercial AWSs are normally manufactured
and assembled from outside the developing countries, their main-
tenance is normally costly. AWS maintenance often involves import
tariffs and additional costs such as consultation fees and transport,
which require high investments. Therefore, there is a need to design
affordable AWSs.

To achieve the above, we designed the first-generation AWS pro-
totype. This paper presents evaluation results of the first-generation
AWS prototype, the first of three prototypes and makes recommenda-
tions for an improved second-generation prototype, which shall be as-
sembled and deployed in Uganda, Tanzania and South Sudan.

2. Requirements specification for an Automatic Weather Station

Proper understanding of needs leads to a usable and acceptable
systems. Therefore, in order to provide an AWS, which satisfies both
end-user and system expectations, we analysed the requirements of a
typical AWS. We categorise these requirements under functional and
non-functional requirements.

2.1. AWS functional requirements

Functional requirements capture the behaviour of the system and
are expressed as tasks or services of the system (Malan and Bredemeyer,
2001). Based on the definition of functional requirements, we identified
the following four functional requirements. That is, an AWS should:

i. Collect weather parameters: which include precipitation, tempera-
ture, relative humidity, pressure, wind speed and many others

ii. Process captured data: Data processing involves sensor signal pro-
cessing, calculating derived information such as dew point, data
compression and timestamping collected data among others.

iii. Buffer data: Primary saving of data when collected before sending it
to the repository, which is a location where data is stored perma-
nently

iv. Transmit data from the AWS to the repository

2.2. Non-functional requirements

To design an acceptable AWS, it is important to have detailed un-
derstanding of the non-functional requirements. While the definition of
functional requirements is precise and clear, that of non-functional
requirements is usually vague (Glinz, 2007). The non-functional re-
quirements refer to the property of the system such as constraints,
system attributes, properties and restrictions. These properties must be
satisfied for the system to operate as expected. Besides understanding
the non-functional requirements, quantifying and measuring them is a
daunting task. Proper quantification of the non-functional requirements
makes evaluation of the performance of the AWS easy and leads to an
acceptable system. Despite the challenges, we endeavoured to cate-
gorise and quantify the requirements based on recommendations from
literature.

We made a breakdown of the non-functional requirements using the
IEEE specification (IEEE, 1998), which provides the following four sub
categories.

i. External Interfaces
ii. Attributes
iii. Design Constraints
iv. Performance Constraints

The external interfaces answer questions of how the system software
interacts with people, hardware and software systems. The attributes
are concerned with issues like portability, correctness, maintainability
and security among others. The design constraint issues involve an-
swering questions on whether there are any required standards in ef-
fect, implementation language, policies, resource limits and operating
environment. The performance requirements are concerned with issues
of speed, availability, response and recovery time of various software
functions among others. In the proceeding sub sections, we delve into
the non-functional requirements of an AWS under the four IEEE cate-
gories.

2.2.1. AWS external interfaces
Our AWS is composed of wireless sensor nodes, which collect,

process, buffer and transmit weather data to a storage location referred
to as a repository. A node is a device that is capable of performing some
processing, gathering sensory information and communicating with
other connected nodes on the network. One special node known as a
sink collects data from other nodes and transmits it to a remote re-
pository via a gateway.1 Once at the repository, additional processing
may take place. All sensor nodes are powered by solar panels or grid
power depending on the location.

Although the AWS automatically collects and transmits data, it re-
quires interfaces through which its operations can be monitored and
configured. That is, monitoring individual sensor nodes as well as the
whole AWS. A sensor node may have an interface to which connections
are made in order to debug or configure it through serial communica-
tion.

Support software such as web services (HTTP) on the AWS gateway
enable remote access to data but drains the limited wireless sensor re-
sources. In cases where the AWS is off-grid or powered by batteries,
running such services on the AWS may lower its efficiency. Fig. 1 is a
block diagram of the AWS interfaces and Fig. 2 shows the web visua-
lization of the first-generation AWS prototype data. The wireless sensor
nodes and gateway are part of the AWS. The AWS interfaces with the
repository and transmission entities through uplink options, which may
be Ethernet, fiber optic, Wi-Fi, GSM/GPRS, satellite, VHF/UHF/SHF,
sneaker net or copper cable among others.

2.2.2. Attributes
Attributes are properties that define the quality of the system. It is

impossible to exhaust all attributes of the system. Additionally, quan-
titatively evaluating these requirements is a hard task. In Crnkovic and
Larsson (2004), attributes are quantified based on properties of com-
ponents including run-time and life cycle properties. Run-time prop-
erties are measured during the execution of the system while lifecycle
attributes characterise different phases of development and main-
tenance of the system. Other classifications of attributes are given in
Musa and Alkhateeb (2013). Among the categories, IEEE gives a com-
plete classification of attributes, a reason we chose it for our AWS.
Table 1 gives a breakdown of the quality attributes based on ISO 9126
Software characteristics. The table also indicates the main category of
non-functional requirements in which the attribute belongs. Some
functional attributes such as suitability are non-quantifiable.

Benchmarking of the AWS with a standard instrument is important
in determining the accuracy of the AWS. Proper sensor calibration can
also ensure data readings are correctly made. Furthermore, AWS siting

1 The gateway is a device, which acts as the bridge between the WSN and
other networks or Internet.
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may affect data accuracy and should be checked to ensure that it con-
forms to standards.

Resource utilization is a major concern in the AWS design since
sensor nodes are resource constrained. The resources include memory,

processing power and energy and data delivery timeliness among
others. In regards to timeliness, collected data must be delivered im-
mediately it is collected if it is to be useful. Table 2 gives sample
wireless sensor node AWS hardware resource limits of an ATme-
ga128RFA1 (Atmel, 2011) microprocessor-based wireless sensor node,
which is what we use in the first-generation AWS prototype.

Hardware features and resource limits have a direct effect on the
software size. For example, the firmware size should be less than the
size of flash memory. Additionally, the amount of time CPU is active
should be minimized to conserve energy. This is because the node
consumes less energy when in deep sleep mode than in active mode. In
deep sleep mode, neither transmission nor reception occurs. Since
transmission and reception of data frames consumes much energy, their
frequency may be minimized to conserve energy. IEEE 802.15.4 pro-
tocol frames, due for transmission must be less than or equal to 128
bytes to avoid buffer overflows, which normally leads to data loss. If the
data size is greater than 128 bytes, it must be split in sizes that fit in the
available buffers.

2.2.3. Design constraints
The AWS design should comply with WMO2 standards provided in

the guide for meteorological instruments and methods of observation
(World Meteorological Orga, 2008). The guidelines include accuracy of
measurements, maximum height requirements and measurement
methods among others. Failure to follow such standards may lead to
inaccurate readings. We follow the suggested standards when deploying
the AWS.

Another design constraint for the AWS is affordability. In order to
make the AWS affordable, approaches such as using locally available
parts and free and open source software may be employed. Free and

Fig. 1. Block Diagram of an AWS architecture and its external interfaces. The
AWS consists of wireless sensor nodes, which collect and transmit data to a sink
node connected to a gateway, a device, which transmits data to a repository.

Fig. 2. Screenshot of a web visualization of the sensor node plots. The plots are
re-created every 1min, plotting the most recently generated 10,000 records
using gnuplot, using cron tab. Accessed from First-generation AWS Prototype
Web Link (2017).

Table 1
AWS Non-functional requirements using ISO 9126 Software Characteristics.

Attribute Description Main category How to achieve the attribute

Suitability AWS appropriateness to objectives Functionality Proper understanding of requirements
Accuracy Correctness of results Functionality Proper sensor selection and benchmarking, Proper AWS siting
Interoperability Working well with other components Functionality Thorough testing (component and system)
Securitya Access control Functionality Data encryption
Fault Tolerance Ability to withstand failure Reliability Choosing robust components, protect parts from adverse environment
Understandability Ease of understanding Reliability Plug and play facilities, provide user-friendly AWS with accompanying instructions
Learnability Ease of learning Usability Plug and play facilities, simple interfaces, user-friendly instructions
Operability Ease to operate in any environment Usability Test performance under varying conditions over prolonged periods of time
Time Behaviour Response time and throughput Efficiency Minimize processing complexity and data delivery time
Resource Utilization Efficient use of resources Efficiency Minimize energy consumption, memory, CPU processing
Analysability Ease to identify cause of failure Maintainability Provide debugging interfaces, facilitate remote monitoring
Changeability Effort to change system Maintainability Use plug-in features to ease addition of new components
Adaptability Ability to change to new specifications Portability Use plug and play features, Use open source software
Installability Ease to install Portability Plug and play facilities, User manual
Replaceability Plug and Play aspects Portability Plug and play hardware

a Data security is given a low priority because accessing small bits of weather data poses no security threat.

Table 2
AWS resource requirements.

Resource Max Available

EEPROM 4K Bytes
Flash 128K Bytes
SRAM 16K Bytes
CPU Active Mode Current 4.1 mA
CPU Deep sleep Mode Current Less than 250ns
Transmit & receive current 12.5 and 14.5 mA
Frame buffer size 128 Bytes

2 The World Meteorological Organization, which provides a framework for
international cooperation in the development of meteorology and operational
hydrology and their practical application.
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open source software helps to eliminate software-related costs such as
licences and subscriptions.

The AWS design choices may be limited by constraints of the
components. Components such as wireless sensor nodes are constrained
in resources such as memory and computational power. The environ-
ment in which the AWS operates may also place additional limitations
on the AWS. For instance, AWSs, which are deployed in remote off-the-
grid locations, may suffer from insufficient power supplies as opposed
to those on the grid. Since data transmission is an energy-consuming
activity in wireless sensor networks, the frequency of transmissions
must be regulated.

2.2.4. Performance constraints
We evaluate performance in terms of speed and response time of the

AWS. Delays may arise at any point of executing the AWS core func-
tions. That is, during data collection, processing or transmission. During
data collection, sensors may fail to collect data due to insufficient
power, hardware or software faults. In such a case, the only measure is
to ensure that general maintenance of sensors such as cleaning and
replacements are performed regularly. Remote monitoring of power
supplies if used can assist in ensuring that power problems are fixed in
time to avoid sensor shut down.

Data processing may involve data aggregation and time-stamping
among others. Processing must be performed in a short time to shorten
delays in data delivery. Additionally, processing must consume minimal
computational resources such as memory, processor time and power.
Data aggregation in particular requires packets to wait for others so as
to be combined to reduce the number of transmissions. Such a method
may be applicable in cases where weather data is required after a long
time interval. For example, temperature readings may be required after
1 h while wind readings may be required more frequently.

We use IEEE 802.15.4 (IEEE Standard, 2006) protocol for inter-
sensor communication. Performance of the protocol degrades with poor
link quality and low Received Signal Strength Indicator (RSSI). The
RSSI is affected by many factors, many of which are non-design issues
and may vary with time and environmental conditions (Wennerstrom
et al., 2013). We recommend checking RSSI values during deployment
to establish the best locations for placement of nodes and especially the
sink node or gateway.

Data transmission from the AWS to the repository is facilitated by
uplinks, which are interfaces that enable access to Internet. Choosing an
uplink option over the other depends on resource availability and ap-
plication requirements. For the case of Uganda, mobile Internet plans
were given in Uganda Communications Com and Uganda (2017) gives a
map of Uganda, indicating the fibre optic cable coverage. Table 3 gives
a SWOT analysis of the AWS uplink options.

Sneakernet is the cheapest uplink option. However, since data is
required with minimal delays, sneaker net may only apply when the
AWS is in an accessible location, there are insufficient or no funds or in
cases where timeliness in data delivery is of no concern. Since available
resources and location determine the cost of setting up the uplink, a
design that supports all uplink options gives a user a chance to select
and use the best option for a particular deployment. We therefore left
the option of choosing the most preferred uplink option open. Table 4
shows estimated uplink set up and operational costs.

3. AWS design

In this section, we present the first-generation AWS prototype de-
sign. The AWS prototype is based on Wireless Sensor Networks, com-
municating wirelessly using IEEE 802.15.4 protocol. The choice of
sensors used was a decision made by meteorological experts (Björn
Pehrson, 2014). Since WMO recommends measuring various weather
parameters at specific distances from the ground, we placed various
nodes at three different heights from the ground. That is, 10m, 2m and
near the ground. We also added a sink node to receive data from all Ta
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other nodes. The sink node is connected to a gateway, a Raspberry Pi,
which transmits data to a repository and was placed approximately
80m from the other three nodes. We selected Ethernet as an uplink
option because the AWS was close to a networked building, which made
connection easy and cheap. Each node had its own power supply and
was equipped with a radio transceiver to transmit data to the sink node.
Table 5 shows the AWS prototype parameters measured.

The gateway, runs a web server that stores AWS prototype database,
a text file containing rows of data in form of key-value pairs. The da-
tabase file can be downloaded via HTTP, using a browser of choice. The
remote repository to which data should permanently be stored, was
only receiving and storing data in a text file although we plan to im-
plement a relational database for efficient querying. Besides weather
parameters, the database also stores parameters such as date and time
of data collection, time zone, latitude and longitude, status of sensor
nodes and wireless signal information. The AWS is designed in a way
that new sensors are automatically detected by neighbouring nodes.

Remote monitoring of the AWS is performed using web browser and
data received via TCP ports at specific intervals. Real-time plots of the
collected data show variation of link quality, weather parameters and
voltages over time.

4. First-generation AWS prototype evaluation

We deployed the prototype and monitored it for a period of 5
months. This period gave us an opportunity to understand the beha-
viour of the AWS in both hot and cold weather conditions. Our AWS
was deployed alongside the official weather station for benchmarking
purposes. Engineers and meteorologists monitored the AWS prototype
performance. Meteorologists recommended sensors for use and per-
formed data analysis to determine sensor accuracy. In cases where we
used multiple sensors to measure a single parameter, analysis results
helped to select the best sensor for use in the second-generation AWS
prototype. The engineers were tasked with assembling, deploying,
maintaining and monitoring the AWS to ensure continuous service.

We evaluated the AWS performance in relation to the non-func-
tional requirements identified. Issues of concern include resource limits
like power consumption, space requirements, AWS cost and robustness
of the system among other things.

We assessed whether the AWS performed the required functions but
most importantly whether it satisfied the non-functional requirements
specified in section 2. We noted that the AWS prototype performed the
four functional requirements. However, some performance parameters
needed improvement for the second-generation AWS prototype to
achieve better performance. Below are the questions we had to answer
during the evaluation process:-

i. Does the AWS prototype possess the necessary quality attributes?
ii. Are the design constraints satisfied?
iii. Is the AWS prototype performance satisfactory?

4.1. Quality attributes

Table 6 shows the quality attribute benchmarks we evaluated.

4.2. Design constraints

We made a breakdown of the design constraints in three categories,
namely:- affordability, standards and constraints. Affordability is con-
cerned with all forms of costs associated with producing, operating and
maintaining the AWS. We expect the AWS costs to be lower than those
of the existing commercial AWSs since we plan to use free and open
source software in the later generations of the AWS. The nodes use
contiki (Dunkels et al., 2004), which is a lightweight and flexible em-
bedded operating system. The small size of contiki image enables it to
fit on the available 128K of the node's flash memory. Additionally,
contiki is free and open source, attracting a wide range of developers.

Because of our operating system choice, we use C programing, a
language used in developing contiki operating system. In case any other
operating system is to be used, the supported language may be adopted.

We emphasize the use of locally available parts to further lower the
cost of production.

4.3. Performance constraints

We evaluated performance in terms of the AWS timeliness in data
delivery and response time in order to ensure that response time is
minimized and data is delivered in real-time.

5. Results

In this section, we present results of our evaluation in regards to the
main categories of non-functional requirements i.e. attributes, design
and performance constraints.

5.1. Quality attributes

5.1.1. Reliability
Reliability is an important quality attribute of an AWS. We eval-

uated the AWS reliability through assessing the ratio of downtime and
uptime. We computed the expected number of packets from 7th July
10:27 to 4th December and got the percentage packet loss from the
actual number of packets received during the time. Table 7 shows the
packet delivery ratio of the four nodes from 7th July to 4th December.

5.1.2. Data accuracy
A comparison of first-generation AWS prototype data with an al-

ready benchmarked AWS, while showing a good correlation, still ex-
hibits some degree of variance in some regions. Fig. 3 shows a scatter
plot of solar insolation recorded by the BPW20R sensor of the AWS
prototype versus a standard AWS from 7th July to 27th August.

Figs. 4 and 5 shows the scatter plots for temperature readings of the
temperature readings of against a benchmarked garden AWS with and

Table 4
Estimated Connection and operational costs in USD for uplink options.

Uplink option Cost/month/1 GB Set up cost

Ethernet 5 150
Fibre Optic 250-450 per 512 Kbps 1500
GSM/GPRS 5.5–10 28
Satellite 5–250 5000

Table 5
First-generation AWS prototype weather parameters measured (sensors are specified in Björn Pehrson (2014)).

Node Location with Ref to the ground(m) Weather Parameter

Ground 0 Soil Temperature, Soil Moisture
2m 2 Temperature, Humidity
10m 10 Wind Speed, Wind Direction, Humidity, Solar Insolation
Sink Depends on Good Signal Value Temperature, atmospheric pressure, Humidity

M. Nsabagwa, et al. Development Engineering 4 (2019) 100040
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without outliers respectively. The correlation value of the SHT25
temperature readings between the first-generation prototype and the
standard benchmarked AWS was 0.4137. There were many outliers that

can be caused by a number of reasons. Primarily, interferences at the
ADC channel pin can have a sudden and large impact on instantaneous
values recorded by the microcontrollers. Low power to the sensor nodes
can also affect the accuracy of the ADC. We however observed that low
power was not an issue. Generally, the first-generation AWS prototype
gave higher temperature readings mainly because the sensor was en-
closed in a box with limited aeration. This was in comparison to the
benchmarked AWS which had a well aerated radiation shield.

We further removed all outlier values that fell within a difference of
5 degrees Celsius from each other, hence retaining over 80% of the
original data points. The scatter from the resulting data shows a
stronger positive correlation of 0.86.

There were variations in the supply voltages of the nodes. The
variations were significant for the three nodes including 2m, 10m and
gnd nodes because they relied on solar power, which was intermittent
while the sink node was directly connected to grid power, which was
more stable. Fig. 6 shows the variation of supply voltage of all nodes
over a period of 300 hours.

5.2. Design constraints

5.2.1. Power consumption
Power consumption is a design constraint, which affects the lifetime

of the AWS. The AWS nodes are powered by solar panels. Since solar
panel energy is a limited resource, the selected nodes should consume
little power. Typically, each sensor node consumes about 45 μW. This is
very low power consumption in comparison to what other peers have
achieved in this area. One node can run for over 6 weeks on a single
charge of a 270 F lithium-ion capacitor (Robert Olsson, 2015). Weather
stations with one solar panel have a single point of failure in regards to
energy harvesting and are thus less reliable. Also, the use of miniature
solar panels reduces attractiveness to vandals, which has been proven
to be a major concern in developing countries (Nsabagwa et al., 2016).

Table 6
AWS Quality attribute benchmarks.

Attribute Resource/Property Limits

Accuracy Proper sensor selection, ideal AWS environment Less than ± 0.5
Fault Tolerance Choosing robust components, protect parts from adverse environment Not less than a Year warranty
Time Behaviour Processing time data transmission time Deliver data in less than a minute

Data transmission
Resource Utilization Energy consumption Current draw in active state: 10mA

memory Firmware size < 128 KB
CPU processing power

Table 7
AWS packet delivery ratio (Ratio of packets Received).

Node Expected Received %received %Dropped

2M 216812 171732 79.21 20.79
10M 433624 313741 72.35 27.64
GND 216812 181099 83.53 16.47
Sink 216812 215055 99.19 0.81

Fig. 3. A scatter plot of the AWS solar irradiance against a benchmarked AWS.
A correlation of 0.65 was observed from the first-generation AWS prototype
data compared with the standard AWS.

Fig. 4. A scatter plot of the AWS SHT25 temperature readings against a
benchmarked garden AWS.

Fig. 5. A scatter plot of the AWS SHT25 temperature readings against a
benchmarked garden AWS without outliers (temperature range min −4.5 °C,
max 29.2 °C and Relative Humidity of min 17.99 and max 104.26).
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5.2.2. Data buffering and transmission
Sensor nodes transmit data to the sink node without buffering it. In

the event of the sink failure, all data lost is never recovered. In order to
support data buffering at the sensor node, there are TX/RX buffers,
which take a maximum of 128 bytes. Since a single IEEE 802.15.4 frame
may take up to 127 bytes, the space becomes insufficient. The challenge
with the current design is that whenever the gateway goes off, all data
from other nodes is lost.

A total of n rows were recorded every minute, each row taking an
average of y bytes. The file therefore increases by (n.y) bytes every
minute if all nodes transmit. The amount of buffer memory in bytes
required per node in a month, which has d days is given by equation
(1).

=size n y d. . 60.24. (1)

In regards to our AWS, n= 6, y= 192 bytes. In a month, of 30 days,
the required raw data bandwidth is 497MB. The data was sent in its
raw form, without any form of compression because compressing it may
need waiting for data to accumulate, causing delays in delivery.

Besides the raw data, additional bandwidth overhead is experienced
in terms of software installation and upgrades. Additional bandwidth is
also required for upload traffic such as accessing data via HTTP. That is,
in form of downloading the AWS prototype data file and accessing
plots. This extra bandwidth may amount to 500MB, making the re-
quired monthly bandwidth go up to 1 GB.

5.2.3. Learnability and maintainability
Below are the steps required to set up the AWS for operation: -

i. Assembling power supplies for the three nodes
ii. Powering the nodes
iii. Configuring the nodes
iv. Attaching nodes to the stand
v. Configuring the gateway
vi. Deploying
vii. Continuous monitoring AWS operation

Each of the steps involves various levels of complexity and ex-
pertise. Node configuration is performed via a serial command-line
interface. That is, one has to physically connect the node, which in-
creases maintenance costs in case the AWS is in a remote location.
Additionally, users require prior basic networking knowledge to per-
form the configurations.

Gateway configuration requires technical knowledge including set-
ting up TCP clients, Internet connectivity, web server configuration,
cron tabs and many other services that facilitate remote access. For new
users, setting up these many services makes learning a complicated
process, hence a hard to learn process, calling for an easier interface.

5.2.4. AWS costs
The cost of production, operation and maintenance has an impact

on the affordability of the AWS. For that reason, we strive to keep the
cost as low as possible. One way of lowering the cost is through pro-
moting the use of free and open-source software, which we plan to
provide in the second-generation prototype. Table 8 gives an estimate
of the cost of the AWS. We have eliminated operational and main-
tenance costs because they vary with service provider and AWS type.
Our AWS cost has been estimated at USD 1,800, which is lower than a
commercial AWS such as (Scientiic Sales, 2017), which are approxi-
mately USD 7000.

5.3. Performance

In regards to the AWS response time, data is delivered in less than a
second after it is collected, which is an indication of good performance.
Data speeds may be affected by the network speed, which is a non-
design aspect.

6. Discussion

There are several issues of the prototype, which need to be im-
proved in order to get an affordable and robust AWS.

6.1. Power consumption

The prototype power consumption can be reduced by changing the
gateway, the raspberry Pi. The gateway design, which is based on an
operating system incurs overhead due to the high-level software stacks.
This is as opposed to the bare metal embedded applications. The
Raspberry Pi requires 700mA current draw in active mode (Vladimir
Vujovic, 2014). On the other hand, sensor nodes draw approximately
8mA when in active mode. The power consumption can be reduced in
two ways in order to exploit even the low levels of solar irradiance such
as during cloudy days. First, by changing the gateway platform from the

Fig. 6. Clock-wise from Top left are the supply voltages for sink, gnd, 10m and
2m nodes. The sink node had the most stable voltage since it was powered from
the grid. On the other hand, 10m suffered from power problems due to the
power supply failure, hence going to as low as 1.9 V and sometimes off.

Table 8
Cost estimates for Gen 1 AWS.

Category Equipment Quantity Unit Cost Total Cost

Production RS Motes 4 67 268
White enclosures 4 7 28
Temperature Sensor Radiation
shield

1 120 120

Photo Diodes 1 23 23
Daughter Cards 3 49 147
Power Supply Unit 4 57 228
Raspberry Pi 1 96 96
Modem 1 40 40
Memory Card (4 GB) 1 5 5
Diffusor (3 mm) 1 6 6
Wind Gauge 1 170 170
Soil Moisture sensor 1 57 57
Soil Temperature Sensor 1 12 12
Stand fabrication + Material 1 300 300
Solar Panels 1 100 100
Other Consumables 1 200 200

Operation Internet Subscription/Month ∼1 GB
Power (on-grid stations)/
Month

Maintenance Replacement of spare parts
Transport

Total 1800
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raspberry pi to a more power-lean one while retaining the functionality.
Secondly, by trading some functionality for lower power performance;
for example, by eliminating the need for remote access via SSH, redu-
cing the frequency of data transmission or by completely doing away
with an operating system and using a custom embedded platform such
as a low power microcontroller. These two options can be combined to
save even more power. Duty cycling methods can also be looked into to
reduce the sensor node power consumption.

For areas with grid power, power consumption is not a big concern.
Embedded computers like the Raspberry Pi would take up to 40 days to
consume 1 kWh of electricity. In areas without access to grid power
however, such as rural areas in Africa, the need for low power devices is
extremely important. In such cases, gateway functionality would have
to be implemented on low power microcontrollers, with custom power
management programs such as sleeping during inactive states. The
ATMEGA128RFA1, the same used in the motes, is a very good con-
tender to act as a sink node and gateway at the same time.

6.2. Power supply

The power supply design is essential for battery-powered AWS
components such as sensor nodes and low-power gateway micro-
controllers. The power supply design for grid powered AWS are trivial.
This system consists of the energy-harvesting unit, which is a solar
panel in most cases, the battery and some power electronics. The power
supply design varies greatly depending on the intensity and duration of
sunshine and the nominal voltage of the selected battery technology.

In areas with poor sunshine, such as the frigid zones, the solar panel
power rating must be much larger than the rated power of the con-
suming component. As such, the supply voltages from the panels are
usually high and must be stepped down. In our AWS prototype, the
panels were rated 21 V and we used a step-down converter from the
input range 4.5–25VDC from the solar panels to 3.6VDC, to charge a
super capacitor powering the node.

In deployments with high solar intensity and duration, smaller solar
panels have been tested. Some of these generate voltages as low as
2.5 V. These can be stepped up to the battery voltage, such as 3.6 V. The
use of these power electronics is essential because the intermittent
sunshine doesn't ensure constant voltages on the solar panels.

The battery technology to use is also a major consideration. On one
hand, traditional battery technologies such as lithium-ion batteries
have high energy densities and high internal resistances and as such,
are hard to charge when sunshine is intermittent. On another hand,
emerging technologies like Lithium-ion capacitors (LICs) have ex-
tremely low internal resistance and can charge in seconds. Also, com-
pared to batteries, LICs have a smaller energy density. However, with
regards to the AWS application, the energy density from LICs is suffi-
cient to provide power for several days to the motes. Their use to power
a low-power gateway is currently untested.

6.3. Data transmission

The first-generation AWS prototype uses raspbian, a Linux-like op-
erating system. The gateway supports a number of communication
devices. The first-generation AWS prototype uses Ethernet but can also
use USB dongles for Ethernet, Wi-Fi or cellular communication. This
sub-problem is concerned with two things. First is choosing the most
reliable and cost -effective way of transmitting data from the AWS to
the central repository given the available resources at the AWS in-
stallation site.

A choice has to be made between cellular network connection, other
terrestrial wireless options (VHF/UHF/SHF), copper wire, optic fibre,
satellite, sneakernet or a combination of some of these. The selection
has to be made while keeping in mind the reliability of the selected data
transmission option, the short and long term costs of using and main-
taining the said option as well as the power consumption, data integrity

and other issues.
Second is the consideration that a change in the gateway device

could imply adjustments in the uplink devices to be used. Less advanced
embedded systems without in-built controllers for standard interfaces
such as USB or Ethernet will require external controllers and, hence,
developing drivers for these controllers.

An assessment of data stored in the database file reveals duplication
of data. Data including time zone, Latitudes and Longitudes and MAC
address, which never changes for a given node and location, wastes
bandwidth. Sending such duplicated data wastes resources including
power, bandwidth and storage space. Other parameters such as TTL,
RSSI and LQI may only be transmitted if there is a change in the value.
Doing so shall lower costs of transmitting data.

6.4. Weather parameters

Rainfall measurements, which are very important especially for East
Africa, are missing in the first-generation AWS prototype. We shall in-
vestigate and choose a rain sensor for inclusion in the second genera-
tion AWS prototype.

6.5. Reliability

Temperature data correlations were non-linear especially for July.
This was because the AWS prototype temperature sensor was not en-
closed in a radiation shield, which made heating of the sensor due to
the direct sun and increasing the values of the readings.

In regards to the number of packets received, the sink node dropped
the least number of packets while 10m node lost the most. The sink
node's high packet reception rate was because it was directly attached
to the gateway and as such dropped no packets during transit. This is as
opposed to the other nodes, which were situated close to 80m from the
gateway. Whenever the RSSI environmental conditions changed,
packets would be dropped. Besides dropping packets in transit, the 10m
node suffered from power failures due to faults in the circuitry, which
often caused it to go off. Furthermore, the wind sensors attached to the
10m node required higher voltages that was available.

7. Conclusions and future work

Automatic Weather Stations play a major role in weather informa-
tion management since they provide timely and reliable data, hence
higher chances of accurate weather predictions. It is however challen-
ging to achieve the timeliness and accuracy if AWSs are costly or non-
robust. In this paper, we have evaluated our first-generation AWS
prototype, which is the first of three prototypes to be designed and
tested. We assessed functional and non-functional requirements of an
AWS, and used them to benchmark performance of our first-generation
AWS prototype, which indicated a shortfall of some of the non-func-
tional requirements. Thus, improvements are required in the second-
generation prototype. We hope by producing affordable and robust
weather stations, the country shall be able to increase the density of the
weather stations, hence increase in weather data for research purposes
and improved accuracy in forecasting. Researchers may evaluate the
impact of the AWSs by assessing the number of operational WIMEA-ICT
AWSs installed in the country as well as the amount of weather data the
AWSs contribute towards the forecasting process. Increased access to
weather information by researchers fosters innovation in weather re-
lated services, which in the end improves lives of people and businesses.
Next we intend to undertake the following:

• Setting up second-generation AWS prototypes in Uganda, Tanzania
and South Sudan to test in these operating environments and
weather conditions

• Designing low-power gateway, which eliminates high power-con-
suming tasks and handles basic functions such as data collection and
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transmission

• Research on using smaller solar panels that are less attractive to
vandals.

• Developing a free and open-source wireless sensor node application
to enable customization e.g. data buffering at node level.

• Include a rain gauge.

• Provide for a radiation shield to protect the temperature sensor from
the direct sun which results into wrong readings.

• Work with meteorological authorities in benchmarking the AWS.

Following satisfactory developments on this AWS, we plan to mass-
produce and deploy 70 units in the East African region. This deploy-
ment will lead to a denser weather station network hence increased
precision of weather readings and accuracy in weather predictions.
Other developing regions with similar challenges will have access to the
free and open-source designs and software of this AWS hence can take
advantage to customise their own AWS and share in its benefits. We
hope to improve on the volume of weather data, hence accurate and
timely weather forecasts.
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